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Abstract
We present a new method to improve the repre-
sentational power of the features in Convolutional
Neural Networks (CNNs). By studying traditional
image processing methods and recent CNN archi-
tectures, we propose to use positional information
in CNNs for effective exploration of feature de-
pendencies. Rather than considering feature se-
mantics alone, we incorporate spatial positions as
an augmentation for feature semantics in our de-
sign. From this vantage, we present a Position-
Aware Recalibration Module (PRM in short) which
recalibrates features leveraging both feature seman-
tics and position. Furthermore, inspired by multi-
head attention, our module is capable of perform-
ing multiple recalibrations where results are con-
catenated as the output. As PRM is efficient and
easy to implement, it can be seamlessly integrated
into various base networks and applied to many
position-aware visual tasks. Compared to original
CNNs, our PRM introduces a negligible number of
parameters and FLOPs, while yielding better per-
formance. Experimental results on ImageNet and
MS COCO benchmarks show that our approach
surpasses related methods by a clear margin with
less computational overhead. For example, we im-
prove the ResNet50 by absolute 1.75% (77.65% vs.
75.90%) on ImageNet 2012 validation dataset, and
1.5%∼1.9% mAP on MS COCO validation dataset
with almost no computational overhead. Codes are
made publicly available1.

1 Introduction
Humans learn visual scenes by considering both distinct
objects and the surrounding environment [Yu et al., 2018;
Borji and Itti, 2012]. By analyzing the target representation
and considering the surrounding context, people can infer vi-
sual concepts effectively.

In computer vision, such attributes can be obtained by an-
alyzing the feature dependencies on feature maps [Wang et
al., 2018]. However, directly querying for the dependencies

1https://github.com/13952522076/PRM

over the entire image for each pixel would radically increase
the computation overhead, making it infeasible to integrate
with each block in a convolutional neural network [Wang et
al., 2018]. In addition, such an approach is inefficient since
many pixels are useless and even detrimental, making little to
no contribution to feature extraction.

To mitigate this problem, researchers propose to query the
dependencies in a more succinct fashion; instead of query-
ing for every pixel, they query the global context by using
a query-independent operation [Hu et al., 2018b; Cao et al.,
2019]. The change from query-specific to query-independent
operations significantly reduces computation overhead while
achieving comparable performance. This design presents a
satisfying result for a range of vision tasks, but it suffers from
the inherent weakness: the spatial position information is dis-
carded. Even if we disrupt the spatial position of the features,
there will be no change in the results for query-specific or
query-independent operations (e.g., in GC [Cao et al., 2019]

and Non-Local [Wang et al., 2018] modules).

While positional information is barely exploited in preva-
lent CNN models, it has never gone out of favor in literature
and gained more traction recently. An inspiring example is
the Transformer [Vaswani et al., 2017] for machine transla-
tion tasks. To remedy the position-agnostic property of self-
attention mechanisms, a lightweight fully-connected network
is applied by the Transformer to each position separately and
identically. More recently, Local-Relation Network [Hu et
al., 2019] for image recognition tasks considers geometric
priors by using a small sub-network. However, the local re-
lation network is difficult to implement since it possesses lit-
tle compatibility with the common deep learning frameworks.
We also notice that convolutional layers can implicitly learn
the positional information from the widely used zero-padding
operations [Islam et al., 2020]. Nevertheless, the simple zero-
padding operations are insufficient when compared with di-
rect position learning.

In this paper, we emphasize that feature positional knowl-
edge makes a significant contribute to many vision tasks in
addition to feature semantics. Following this direction, we
propose a new lightweight module that distills this insight
into a combination pipeline. To ensure networks can effec-
tively construct feature presentations, we calculate similar-
ities and relative positions for the most discriminative fea-
tures, and combine them to recalibrate the intermediate fea-
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ture maps. In addition, we leverage the mean of each channel
as a global context for supplement. To further improve the
performance, we extend our method to a reformed multi-head
version, similar to that in [Vaswani et al., 2017], but leverag-
ing group operations.

Experimental results show that our position-aware recal-
ibration module outperforms the baseline and related mod-
ules by a clear margin, with reduced computation complex-
ity and model size. We evaluate our module on multiple
vision tasks including image recognition and object detec-
tion. Compared with plug-in modules in [Hu et al., 2018b;
Hu et al., 2018a; Woo et al., 2018; Cao et al., 2019;
Li et al., 2019a; Li et al., 2019b], we achieve results either on
par or better with fewer parameters and FLOPs. Meanwhile,
when applying our method to object detection, our PRM con-
sistently achieves at least 1.5% ∼ 1.9% absolute mAP im-
provement on the MS COCO benchmark.

The main contributions of this paper are as follows.

• Experimental results show that it is practical to calculate
the dependencies between the feature map and the most
representative query points for the key-query operations.
To further reduce parameters and FLOPs, we process
the dependencies by leveraging normalization statistics
rather than applying learnable layers.

• We introduce the relative positional information to the
learning procedure, which is crucial in the human visual
system, but overlooked in existing work.

• To balance accuracy and computational overhead, we
develop and operate multi-head PRM in groups, which
achieves a stronger capability with minimal parameter
increase compared to the original PRM.

2 Related Work
2.1 Position Encoding
Position encoding encodes the geometric position and dis-
tance information of pixels in an image [González and
Woods, 1981]. Typically, it encodes the spatial dependency
between a pair of pixels based on their distance. Recent tech-
nologies in neural language processing employ position em-
bedding to explore word dependencies, such as Transformer
[Vaswani et al., 2017]. Most recently, position encoding has
attracted more interests in vision community. For example,
AANet [Bello et al., 2019] incorporates positional informa-
tion into self-attention, Hu et al. [Hu et al., 2019] exploit fea-
tures’ spatial distances to enhance the feature representation
ability. Although position encoding improves the represen-
tation ability of local relation networks, the sliding window
and short range of receptive field make it difficult to learn the
global geometric dependency. In contrast, we encode the rel-
ative position information between a selected point and global
feature maps.

2.2 Self-Attention Mechanisms
To our knowledge, self-attention was first proposed to ex-
plore global dependencies in machine translation [Vaswani
et al., 2017]. For each position, self-attention calculates the
weighted response of the global context in a mapping space.

However, traversing the global dependency for all points is
prohibitively expensive. To this end, Global Context [Cao
et al., 2019] applies a query-independent formulation, which
reduces the computation overhead while achieving a compa-
rable performance. Inspired by that work, we compute the
similarities between entire feature map and the most charac-
teristic features. To further improve our method, we present
a multi-head attention design that calculates dependencies in
groups and concatenates the results as the output.

2.3 Normalization
Normalization has been an indispensable component in state-
of-the-art deep learning models. In order to mitigate distribu-
tion shifting in a deep neural network, Ioffe et al. introduced
Batch Normalization (BN) [Ioffe and Szegedy, 2015], which
scales and shifts the output of each convolutional layer. How-
ever, the performance of BN is affected by the batch size.
When using a small batch size which is common for train-
ing object detection and segmentation networks, BN suffers
from dramatic performance degradation. To this end, various
improved normalization layers are proposed to overcome this
problem [Ba et al., 2016]. In this paper, we leverage the nor-
malization statistics in our design to process obtained feature
dependencies.

3 Our Proposed Method
In this section, we describe the proposed position-aware re-
calibration module (PRM) in detail. The input and output of
a PRM are denoted as x ∈ R

C×H×W and y ∈ R
C×H×W ,

where C is the channel number and H × W indicates the
spatial resolution, and the batch dimension is not included
for brevity. Inspired by self-attention mechanisms, we con-
sider feature dependencies for each key-query pair. We note
that calculating the relationship for every pair of key-query
is compute intensive, as pointed out in [Wang et al., 2018].
For better efficiency, we opt to calculate the relationship be-
tween a feature map x and the most representative query point
q ∈ R

C . We select the query point q by the index of max-
mean value along the channel dimension of each position in
x. Then, we encode the relative geometric position to re-
weight the dependencies. As we choose only the most dis-
criminative point, it may not be sufficient to present the whole
feature map, as demonstrated in [Woo et al., 2018]. For this
reason, we also calculate the dependencies between the fea-
ture map x and a global context z ∈ R

C (which is obtained by
global average pooling) and use them in PRM. Our position-
aware recalibration module (PRM) can be formulated as

y = sigmoid (N (S))⊗ x
s.t. S = αφ (x, q) ∗D+ βφ (x, z) ,

D = fp (|px − pq|) ,
(1)

where φ(·) is a similarity function; α and β are learnable pa-
rameters to balance the importance of dependencies to the
most discriminative point and the dependencies to the global
context; px ∈ R

2×H∗W and pq ∈ R
2×1×1 are the position

indexes of feature map x and query point q; fp (·) is an en-
coding function of relative geometric position; function N
means the similarity normalization; ⊗ indicates element-wise
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Figure 1: A basic Position-Aware Recalibration Module, which can
be simply extended to multi-head PRM as presented in Section 3.5.

dot-product. For convenience, we calculate the relative geo-
metric position between each point in x and query point q
by absolute distance, that is |px − pq|. An example position-
aware recalibration module is illustrated in Figure 1.

The central idea of Equation (1) is to learn the recalibration
coefficients from both feature semantics and feature position.
We then scale the coefficients to a range of (0, 1) using a sig-
moid function to recalibrate the input x. In the following sub-
sections, we will comprehensively describe each component
and analyze the detail design.

3.1 Similarity Function
We model the feature dependencies of feature map x and
query point q (or global context z) via their similarity φ (x, q).
Following the state-of-the-art work [Hu et al., 2019; Wang et
al., 2018], we present several instantiations of the pairwise
similarity function φ:

Cosine similarity. As a common approach used in infor-
mation retrieval, we calculate the similarity as:

φ (xi, q) =
xT
i q

max (‖xi‖2 ∗ ‖q‖2 , ε)
, (2)

where ε is a small value to avoid division by zero. As an
example, we set ε to 10−8.

L1-norm similarity. A naive implementation of similarity
is to measure the difference between two vectors. In this vein,
the similarity function can be written as:

φ (xi, q) =

C′∑
c=1

− |xc
i − qc| , (3)

where c is the channel index. We sum up the similarity of
each channel to obtain the final similarity.

Dot-product similarity. We also consider the dot-product
similarity, which can be presented as:

φ (xi, q) = xT
i q. (4)

The above entities of similarity function φ showcase the
flexibility of PRM. While various similarity functions can be
explored, we empirically demonstrate that it is insensitive to
the performance (see Table 3), indicating the robustness of
our PRM. In the following experiments, we opt to choose
Equation (4) as our default setting, unless otherwise noted.

3.2 Position Encoding
In addition to feature semantics, another essential aspect con-
tributes to the presentation ability is the feature position,
which, however, is overlooked in most networks. To this end,
we explore the position encoding for our PRM.

To study the intrinsic properties of feature position, we first
compute the pairwise relative position between all key point
positions in x and the query point position to form a relative
position map D ∈ R

2×H×W . For each pair of key-query
point, the distance can be formulated as Di = |pxi − pq|,
where p denotes the (x, y) geometric position. Next, we en-
code the distance map to a new embedding space. Driven by
the observed phenomena in [Luo et al., 2016] that the impact
in a receptive field follows a Gaussian distribution, we encode
the distance using a probability density function. We regard
this transformation as our position encoding fp:

fp (|px − pq|) = 1

d
√
2π

e
− 1

2

(
θ|px−pq|

d

)2

, (5)

where learnable parameter θ ∈ R
2 redresses the scale of

|px − pq|, and the learnable scalar d regulates the density
curve of the Gaussian distribution. Compared with the learn-
able layers for positional encoding [Vaswani et al., 2017;
Hu et al., 2019], our design is more interpretable and friendly
for training. The encoded relative geometric position is then
aggregated with the dependency φ (xi, q) by multiplication.

3.3 Semantic Normalization
We next regulate the semantic similarity using normalization
statistics. Suppose the feature similarity map is S ∈ R

H×W ,
we compute the mean μ and standard deviation σ by

μ =
1

HW

HW∑
i=1

Si, σ =

(
1

HW

HW∑
i=1

(Si − μ)
2

) 1
2

. (6)

We normalize the similarity S over the spatial dimension, as
employed in recent works [Li et al., 2019a]:

S = fs (S) =
S− μ

σ + ε
, (7)

where constant ε = 1e−5 is for numerical stability. Next, we
apply an affine transformation which can be formulated as

S = λS+ ξ, (8)

where λ and ξ are a pair of learnable parameters to avoid
distribution shifting.

3.4 Recalibration
Finally, we recalibrate the intermediate feature map using
normalized S. We re-scale the normalized S to a range of
(0, 1) via a sigmoid function and recalibrate the input x us-
ing element-wise multiplication. Note that during the whole
pipeline of PRM, we only query the dependencies for the se-
lected query point q and global context z, which introduces
few parameters. This indicates that our method is lightweight
(see Table 1 for detailed complexity analysis). Thus, it is pos-
sible to integrate PRM into each block in a network.
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Figure 2: Left: multi-head attention; Right: multi-head PRM.

3.5 Multi-Head PRM
Our PRM learns the dependencies between the entire key map
and a selected query point. We note that while it is relatively
efficient to query the entire feature map for only one point,
similar to [Cao et al., 2019], the performance is compromised
compared with that by querying for all key points. In this
section, we close the gap between querying for particular one
query point (e.g., [Hu et al., 2018b; Cao et al., 2019]) and for
entire query map (e.g., [Wang et al., 2018]).

Driven by the success of multi-head attention modules in
machine translation [Vaswani et al., 2017] and image recog-
nition [Bello et al., 2019], we consider the use of multi-head
PRM, but operate in groups. The number of heads is de-
noted by g. We divide the input x into g groups, that is

x = [x1, x2, ..., xg]. For each group xg ∈ R
C
g ×H×W , we

perform the PRM operation as aforementioned. We then con-
catenate the output of each group as the final recalibrated re-
sult. Figure 2 demonstrates the general modification. Qual-
itatively, assume we have g heads in our PRM, the number
of parameters we introduced grows linearly g times, which
is still negligible compared to the base network. By default,
we set g to 64 in our experiments. In the sense of group op-
eration, our multi-head PRM is similar to the groups design
taken by [Li et al., 2019a] and allows us to improve the per-
formance further while providing a glimpse on its inherent
distinction of each group.

4 Experiments
We present comprehensively experimental results to demon-
strate the power of our method. For brevity, we evaluate
the effectiveness of PRM on both low-level vision task (im-
age recognition) and position-aware vision task (object de-
tection). We compare our method with related state-of-the-
art work and report the classification/detection results in this
section. Our method has prevailed on these comparisons by a
clear margin. Comprehensive ablation studies are conducted
to provide an inherent insight into our method.

4.1 Image Recognition on ImageNet
We first evaluate our module for Image recognition task on
ImageNet 2012 classification dataset [Russakovsky et al.,
2015]. We train all models on the training set using PyTorch
[Paszke et al., 2019] framework, and report the top-1 and top-
5 classification accuracy on the validation set. For training,

we follow the standard practice that randomly crops the im-
ages to a spatial resolution of 224 × 224 and horizontal flip
images by a possibility of 50%. The input images are nor-
malized by mean channel subtraction for both training and
testing. We train all models from scratch using synchronous
SGD with momentum 0.9 and weight decay 0.0001 for 100
epochs. All models are conducted on a server with 8 Tesla
V100 GPUs, and each GPU has 32 images in a mini-batch
(256 in total). The learning rate is initialized to 0.1 and di-
vided by a factor of 10 every 30 epochs.

As shown in Table 1, the top-1 classification accuracy of
ResNet is lifted by 1.75%. Compare with other work, we
achieve a comparable or better performance with fewer pa-
rameters and FLOPs. For instance, we surpass SE-ResNet50
by 0.36% (77.64% vs. 77.28%) with even fewer parameters
and FLOPs. In the context of same FLOPs and number of pa-
rameters, our PRM outperforms GE module and SGE module
by a clear margin. Remarkably, our PRM-ResNet50 achieves
a result that on pair with ResNet101(77.8659%), but only re-
quires about half of the parameters and FLOPs.

We have showcased that PRM provides a broad perfor-
mance gain for ResNet. To further explore the compatibil-
ity of our method, we next consider the introduction of PRM
to various other CNN architectures. Without losing the gen-
eralization, we evaluate the effect of PRM on several differ-
ent CNN architectures, including ResNet50 [He et al., 2016],
MobileNetV2 [Sandler et al., 2018], and MnasNet 1.0 [Tan et
al., 2019]. In table 2, we see that our PRM can consistently
improve the classification accuracy with minimal computa-
tional overhead, independent of the choice of base network
architectures. All these results in Table 1 and Table 2 unam-
biguously demonstrate the efficiency of our PRM. In follow-
ing subsections, we will present detail insights in our PRM.

4.2 Ablation Studies
Similarity functions. Our PRM is not limited to a partic-
ular similarity functions. We investigate three kinds of simi-
larity functions, including cosine, L1-norm and dot-product
similarity, as presented in Section 3.1. For generality, we
evaluate the effect of similarity function on ResNet and Mo-
bileNetV2, and presented the results in Table 3. Across all
three implementations we observe that the performances of
different similarity functions are similar, just a tiny fluctua-
tion of less than 0.06%. Similar phenomena are also shown
in MobileNetV2 architecture. This observation indicates that
our module is not sensitive to the selection of similarity func-
tions, suggesting that the performance gain comes from the
design rather than certain similarity instance.

Selected query point vs. Global Average Pooling. Recall
the formulation of PRM in Equation 1, the similarity metric
is mainly composed of two parts: the similarity to selected
query point q and the similarity to the global average pool-
ing z. Here, we explore the contribution rate of φ (x, q) ∗D
and φ (x, z). We quantify the contribution rate of similarity

for selected query point as rate = 1
g

∑g
i

|αi|
|αi|+|βi| , where αi

and βi indicates the α and β in ith group. We plot the contri-
bution rate of each PRM (total 16) for ResNet50 in Figure 3.
Somewhat surprisingly, the contribution rate is closely related
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Model top-1 acc. top-5 acc. FLOPs (G) Parameters (M)
ResNet50 [He et al., 2016] 75.8974 92.7224 4.122 25.557
SE-ResNet50 [Hu et al., 2018b] 77.2877 93.6478 4.130 28.088
GE-ResNet50 [Hu et al., 2018a] 76.2357 92.9847 4.127 25.557
CBAM-ResNet50 [Woo et al., 2018] 77.2840 93.6005 4.139 28.090
SK-ResNet50 [Li et al., 2019b] 77.3657 93.5256 4.187 26.154
GC-ResNet50 [Cao et al., 2019] 74.8966 92.2812 4.130 28.105
SGE-ResNet50 [Li et al., 2019a] 77.5072 93.6783 4.127 25.560
PRM-ResNet50 (ours) 77.6474 93.6418 4.128 25.560

Table 1: Comparison results of classification accuracy (%) and complexity on ImageNet. The best performances are marked in bold.

Models PRM top-1 FLOPs Parameters

ResNet50
w/o 75.8974 4.122G 25.56M
w/ 77.6474 4.128G 25.56M

MobileNetV2
w/o 71.0320 0.320G 3.51M
w/ 72.5466 0.321G 3.51M

MnasNet
w/o 71.7195 0.330G 4.38M
w/ 73.0147 0.331G 4.38M

Table 2: The performance of PRM on different CNN architectures.

network similarity function top-1 top-5

Resnet50
Cosine 77.6517 93.6711

L1-norm 77.6012 93.5944
Dotproduct 77.6474 93.6418

MobileNetV2
Cosine 72.5374 90.8714

L1-norm 72.5570 90.7993
Dotproduct 72.5466 90.8960

Table 3: Ablation on similarity functions.
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Figure 3: Contribution rate in PRM.

to the stage of the network. As can be observed, the rate is
decreasing in stage 1; in stage2, it is always at a high level; in
stage3, the proportion is relatively low and very stable, only
about 20%; in the final stage4, the similarity of GAP almost
dominates the entire similarity. We argue that this change is
consistent with the philosophy of CNN intrinsically. In the
shallow layers, the features produced by the layers should
be very discriminative [Szegedy et al., 2015]; while in the
deep layers, all the features are semantically strong [Lin et
al., 2017a], indicating that all features contributes fairly.

Multi-head numbers. We test the influence of the head
number in PRM. We test the numbers {8, 16, 32, 64, 128} and
analyze the influence on model performance 2. All the vari-

2We note that when g is too small, it takes much longer time for
PRM to converge due to the similarity variance.
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Figure 4: Influence of the head number in PRM.

ants of PRM are integrated to ResNet18. We plot the per-
formance in Figure 4. Holistically, PRM consistently outper-
forms the baseline by a large margin, regardless of the choice
of the head number. Meanwhile, the accuracy increases pro-
gressively as more heads are employed. Then it becomes sat-
urated when g reaches 64. Thus, we set the heads number g
to 64 by default in our experiments.

Effectiveness of each component. We conduct experi-
ments to study the intrinsic properties of our PRM design by
incorporating each component sequentially to the base net-
work, ResNet18. We evaluate the effectiveness of the fol-
lowing three components: feature dependency, position en-
coding, and normalization, which can be considered as inde-
pendent components. Table 5 disentangles the effect of each
component in our module. In line with our expectations, all
the ablative variants of PRM are instrumental, improving the
performance of original ResNet18 by a large margin. The
ablation studies provide the following insights.

• Most of the performance gain comes from our feature
dependency. Multiplying the weighted feature depen-
dency can yield over absolute 1% improvement.

• The position encoding consistently improves the perfor-
mance of PRM. In particular, our position encoding is
highly convenient and succinct, only two learnable pa-
rameters are introduced for the Gaussian distribution.

• Combining all these components together, we achieve
the best performance. This suggests that the streamline
of our proposed module be empirically effective.

4.3 Object Detection on MS COCO
We further investigate PRM for object detection on the MS
COCO benchmark. Following the discussion in [Ren et al.,
2015], we report the mean Average-Precision (mAP) for the
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Detector Backbone AP50:95 AP50 AP75 APS APM APL GMac Parameters(M)
RetinaNet ResNet50 [He et al., 2016] 36.2 55.9 38.5 19.4 39.8 48.3 239.32 37.74
RetinaNet SE-ResNet50 [Hu et al., 2018b] 37.4 57.8 39.8 20.6 40.8 50.3 239.43 40.25
RetinaNet PRM-ResNet50 (ours) 37.7 58.4 39.7 21.4 40.6 50.7 239.32 37.74

Cascade R-CNN ResNet50 [He et al., 2016] 40.6 58.9 44.2 22.4 43.7 54.7 234.71 69.17
Cascade R-CNN GC-ResNet50 [Cao et al., 2019] 41.1 59.7 44.6 23.6 44.1 54.3 234.82 71.69
Cascade R-CNN PRM-ResNet50 (ours) 42.5 61.2 46.2 24.2 45.8 56.4 234.71 69.17

Table 4: Detection performance (%) using different backbones on the MS-COCO validation dataset. The best ones are highlighted in “bold”.

Feature
dependency

Position
encoding

Normal
-ization

top-1 top-5

68.9632 88.5902
� 70.1863 89.4491
� � 70.2388 89.4970
� � 70.4467 89.5653
� � � 70.5616 89.6635

Table 5: Ablation studies on each component of PRM. We conduct
these ablation experiments based on ResNet-18.

Figure 5: Query points visualization. From top to bottom: selected
query points, the positional mask from all groups, and the attention
map generated by Grad-CAM. From left to right: the correspond-
ing results of each stage in ResNet50. Best viewed in color.

detection performance. We employ RetinaNet [Lin et al.,
2017b] and Cascade R-CNN [Cai and Vasconcelos, 2018] as
detectors with a ResNet-50 backbone in the detection experi-
ments. We apply our PRM and other modules to the ResNet
backbone, modifying them in a similar way as what we have
done in the ImageNet classification experiments. All models
are trained for 24 epochs with pre-trained backbones that are
listed in Table 1.

Without increasing the complexity, PRM improves Reti-
naNet by 1.5% mAP and Cascade R-CNN by 1.9% mAP.
Our module performs better than others (SE module and GC
module) by a large margin, with even fewer parameters and
FLOPs. In particular, our PRM outperforms GC module by
1.4% mAP (42.5% vs. 41.1%) based on Cascade R-CNN de-
tector. The promising results on object detection show that
our PRM is conducive to significantly improve the perfor-
mance of position-aware visual tasks.

4.4 Visualization and Analysis
So far, we evaluate the efficiency of PRM for different vi-
sion tasks and present experimental results to test the intrinsic
properties. Next, we visually showcase the impact of PRM.

Since our module is a query-specific design, we first vi-
sually disentangle the selected query points in our module.
To this end, we plot the selected query points in the inter-
mediate feature maps. The allocations of query points are
plotted in Figure 5 (top line as red points – some are over-
lapped). Clearly, most points locate closely to the target ob-
jects. Specifically, most points overlap in the last stage and
enclose the target object. This indicates our selected query
points are inherently discriminative and position-aware.

We continue to verify the efficiency of our simple posi-
tion encoding. To calculate the positional mask, we leverage
the average of all encoded relative positions (as presented in
Equation 5) among all groups. We use linear interpolation to
match the sizes of the positional mask and the original image.
The positional masks at different stages are plotted in Figure
5 (the middle line). As a comparison, we also plot the at-
tention map generated by Grad-CAM [Selvaraju et al., 2017]

(the bottom line). As we can see, the positional mask and
attention map are generally similar, both caring more about
the most distinct regions and ignoring the unrelated regions.
This result shows that even a simple position encoding can
effectively encode feature’s positional information.

5 Conclusion
We present a new module to recalibrate the convolutional
neural networks, which is named position-aware recalibration
module (PRM). PRM selects the most discriminative query
point(s) in the embedded query space and calculates the de-
pendencies based on the feature semantics and feature posi-
tion. While PRM is conceptually sophisticated, it is computa-
tionally efficient. With PRM integrated, we significantly im-
prove the performance of various CNN modes on ImageNet
and MS COCO benchmarks. Remarkably, our PRM outper-
forms SE, SK, etc by an observable margin, with fewer pa-
rameters and FLOPs. Comprehensive experiments and abla-
tion studies have demonstrated and validated the efficiency
of PRM. On all validation tests, integration of PRM yields
noticeable improvement over baseline models. As a future
work, we plan to investigate other position encoding designs
and a new formulation of our multi-head PRM.
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